Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy

نویسندگان

  • Aleksandra Kezić
  • Natasa Stajic
  • Friedrich Thaiss
چکیده

Acute kidney injury caused by ischemia and subsequent reperfusion is associated with a high rate of mortality and morbidity. Ischemia/reperfusion injury in kidney transplantation causes delayed graft function and is associated with more frequent episodes of acute rejection and progression to chronic allograft nephropathy. Alloantigen-independent inflammation is an important process, participating in pathogenesis of injurious response, caused by ischemia and reperfusion. This innate immune response is characterized by the activity of classical cells belonging to the immune system, such as neutrophils, macrophages, dendritic cells, lymphocytes, and also tubular epithelial cells and endothelial cells. These immune cells not only participate in inflammation after ischemia exerting detrimental influence but also play a protective role in the healing response from ischemia/reperfusion injury. Delineating of complex mechanisms of their actions could be fruitful in future prevention and treatment of ischemia/reperfusion injury. Among numerous so far conducted experiments, observed immunomodulatory role of adenosine and adenosine receptor agonists in complex interactions of dendritic cells, natural killer T cells, and T regulatory cells is emphasized as promising in the treatment of kidney ischemia/reperfusion injury. Potential pharmacological approaches which decrease NF-κB activity and antagonize mechanisms downstream of activated Toll-like receptors are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

Effect of renal ischemia-reperfusion on lung injury and inflammatory responses in male rat

Objective(s):Acute kidney injury (AKI), a syndrome characterized by decreased glomerular filtration, occurs in every 1 of 5 hospitalized patients.  Renal ischemia-reperfusion, one of the main causes of AKI, is of particular importance in the setting of kidney transplantation. Materials and Methods: Sixty male rats were divided into four groups including control, nephrectomy, sham surgery and re...

متن کامل

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

Innate and adaptive immune responses subsequent to ischemia-reperfusion injury in the kidney.

Understanding innate immune responses and their correlation to alloimmunity after solid organ transplantation is key to optimizing long term graft outcome. While Ischemia/Reperfusion injury (IRI) has been well studied, new insight into central mechanisms of innate immune activation, i.e. chemokine mediated cell trafficking and the role of Toll-like receptors have evolved recently. The mechanist...

متن کامل

CALL FOR PAPERS Chronic Kidney Disease and Fibrosis Macrophage-specific deletion of transforming growth factor- 1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury

Huen SC, Moeckel GW, Cantley LG. Macrophage-specific deletion of transforming growth factor1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am J Physiol Renal Physiol 305: F477–F484, 2013. First published June 12, 2013; doi:10.1152/ajprenal.00624.2012.—Macrophage infiltration is a prominent feature of the innate immune response to kidney injury. The per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017